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Abstract—In this paper, small signal modeling of series reso-
nant converter (SRC) operating under variable frequency mod-
ulation is presented. Noting that the existing small signal models
are of higher order and mathematically complex, a reduced
order model is proposed to make the control loop design easy.
Both time-domain-based exact state plane analysis and averaging
technique of an electrical variable are adopted to derive control-
to-output transfer functions of SRC. Accuracy of the proposed
approach is validated using LTSPICE simulation.

Index Terms—Averaging Technique, Series Resonant Con-
verter, Small Signal Modeling, state-plane Analysis, Variable
Frequency Modulation

I. INTRODUCTION

Isolated DC-DC converters today find their use in a variety
of applications like Electric traction [1], grid integration of
renewable energy sources [2] and other power supplies. For
these applications, resonant mode power conversion topolo-
gies viz. series resonant converter (SRC) [3] and parallel
resonant converter (PRC) [4] have gained lot of attention
due to their inherent features like soft-switching, low electro-
magnetic interference (EMI) emission etc. Closed loop control
of resonant converters is typically implemented either using
variable frequency modulation (VFM) or constant frequency
phase shift modulation (PSM) [5]. For many applications
of SRC, VFM-based closed loop control is preferred since
this technique offers lower rms current in the resonant tank
compared to its PSM-based counterpart [6]. However, a clear
insight on small signal behavior of frequency modulated SRC
is necessary for the controller design.

A number of techniques are available in literature to perform
small signal modeling of SRC [7]–[10]. An approximate
approach [7] models SRC as a 3-pole system, where the
low-frequency pole is due to the filter and load network.
To model the resonant behavior, this method introduces a
double-pole at the beat frequency (fs− fb), where fs denotes
steady-state switching frequency and fb represents the reso-
nant frequency. But this model is derived intuitively based
on earlier reported experimental results and also some of the
model parameters are determined empirically. The modeling
technique based on extended describing functions (EDF) [8]
first decomposes the state variables of SRC into sine and
cosine terms. Next, by applying harmonic balance on the non-
linear state equations, this method derives a fifth-order model

which complicates the closed loop controller design. Since this
technique is based on fundamental harmonic approximation
(FHA), the accuracy of this approach is questionable at light
load conditions due to significant higher order resonant current
harmonics. A third-order small signal model is proposed in [9],
which though arrives at the same transfer function as in [7],
but mitigates the requirement of estimating parameters using
simulation/experimental results. But this technique being an
extension of the EDF-based method, the effects of higher order
harmonics are not considered here as well. A communication
signal theory based approach [10] successfully derives a small
signal equivalent circuit model of SRC, which is certainly
useful for SPICE simulation. But no closed form solution
for control-to-output transfer function is provided. Using the
fundamentals of steady-state state-plane analysis of SRC [11],
a discrete time-domain-based small signal model is presented
in [12]. Similar to most of the existing approaches, this method
also suffers from mathematical complexity and fails to derive
a simplified small signal model. However, averaging of state
variables is a widely used technique for pulse-width modulated
(PWM) converters, but this approach is typically not applied
to any resonant converter [13].

This paper presents a new small signal modeling approach
for SRC, which is based on both state-plane analysis and
averaging of a electrical variable over the switching period.
The key contributions of this paper are as follows. (a) Av-
eraging technique is adopted to model the filter and load
network of SRC. (b) Reduced order control-to-output transfer
functions are derived, which are extremely useful for control
loop design. (c) The coefficients of these transfer functions are
obtained using exact solutions of steady-state equations, using
state-plane analysis. The remaining part of the paper is orga-
nized as follows. Section II analyzes the steady-state behavior
of SRC using state-plane method. Small signal model of SRC
is derived in section III. Simulation results are showcased in
Section IV and Section V concludes the paper.

II. STEADY STATE ANALYSIS

Fig. 1 depicts the power train of an SRC, where Lr, Cr
and n represent the resonant inductance, capacitance and the
transformer turns ratio, respectively. Conventional variable
switching frequency based closed loop control architecture is
also shown in Fig. 1. In this configuration, the controller acts
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Fig. 1. SRC with variable switching frequency control.

on the difference between reference voltage (Vref ) and output
voltage feedback (V ). The output of the controller, vf , is fed
to a voltage controlled oscillator (VCO) which decides the
switching frequency (fs) of the primary side H-bridge. The
primary H-bridge is switched to apply a square wave voltage
across terminals a-b of amplitude Vdc and frequency fs. This
VFM-based control structure ensures that the output voltage is
held constant under input voltage and/or load variations. The
exact time domain analysis of SRC operating under VFM is
performed using a two-step approach [14]. Firstly, neglecting
all the circuit non-idealities, the complete switching cycle is
divided into multiple operating modes based on piece-wise
linear sub-circuits. Then state-plane method is adopted to
determine the mode boundaries. To find an important relation
used in deriving the parameters of the small signal model
developed in next section, the analysis is presented briefly as
follows.
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(b)

Fig. 2. Series Resonant DC-DC converter. (a) Equivalent circuit
reflected at transformer secondary. (b) Per-unitized equivalent circuit.

Fig. 2(a) shows the equivalent circuit of SRC reflected
at transformer secondary. For simplicity of the analysis, the
relevant parameters are converted in per unit (PU) form. The
base quantities are provided in Table I and the PU quantities
are listed in Table II. Using these parameters, a normalized
equivalent circuit is derived and shown in Fig. 2(b) where the

TABLE I
PER-UNITISATION BASE PARAMETERS

Description Formula
Base Voltage, Vb nVdc

Base Impedance, Rb n2
√
Lr/Cr

Base Current, Ib Vb/Rb

Base Frequency, fb 1/2π
√
LrCr

TABLE II
PU QUANTITIES

Description Formula
Resonant capacitor voltage, mC nvC/Vb

Resonant inductor current, jL iL/nIb

Switching frequency, F fs/fb

Rectifier input voltage, mS vS/Vb

Angular half-period, γ π/F

Rectified current, j i/Ib

Output current, J I/Ib

Output Voltage (or Voltage gain), M V/Vb

Angular frequency, ωb 2πfb

Angle variable, θ ωbt

Tank Voltage, mab nvab/Vb

Load Resistance, Q Rb/R

Output Filter Capacitance, K 1/(ωbRbCf )

load along with the output filter capacitor and diode bridge is
represented as a current dependent voltage source. Here, mab

and mS represent normalized tank input and transformer sec-
ondary voltage, respectively while jL and mC are PU inductor
current and capacitor voltage. The complete switching cycle
of SRC under steady-state operation is divided into 4 distinct
modes based on the sign of mab and jL. While deducing these
modes, continuous conduction mode (CCM) operation and
above resonance (F > 1) condition are considered, where F
is the PU switching frequency and γ = π/F as given in Table
II. Fig. 3 shows normalized equivalent circuits during each of
these modes. Normalized state equations during these modes
are given in Table III. The electrical variables of SRC during
steady-state operation are depicted in Fig. 4 as a function of

(a) mab = 1, jL < 0

jLmab

−M+1

mC
jLmab

+M+1

mCmS mS

jLmab

+M−1

mC
jLmab

−M−1

mCmS mS

(c) mab = −1, jL > 0

(b) mab = 1, jL > 0

(d) mab = −1, jL < 0

Fig. 3. Normalized equivalent circuit of SRC under different operating
modes. (a) Mode 1, (b) Mode 2, (c) Mode 3 and (d) Mode 4.

TABLE III
STATE EQUATIONS

Mode Governing State Equation
1 djL

dθ
+mC = 1 +M

2 djL
dθ

+mC = 1−M
3 djL

dθ
+mC = −1−M

4 djL
dθ

+mC = −1 +M
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Fig. 4. Key waveforms of SRC as a function of angle variable, θ.

the angle variable, θ and different modes are also highlighted.
Modes 1,3 and 2,4 are symmetrical and their periods are α
and β respectively, so half period is defined by γ = α + β.
Normalized rectified resonant inductor current is denoted as
|jL| in Fig. 4. The average of this current, J , flows into the load
due to charge balance of filter capacitor, Cf , over a switching
period. Since jL flows through the resonant capacitor as well,
normalized load current (J) is derived as

J =
1

γ

∫ α+γ

α

jLdθ =

∫ α+γ

α

dmC

dθ
dθ, (1)

where, α and α + γ, refer to the instants where Modes 1
and 3 terminate, respectively, as indicated in Fig. 4. During
Modes 2 and 3, capacitor voltage changes from negative to
positive peak and due to symmetry both peaks have same
magnitude MC . Rearranging (1), a relationship between PU
peak capacitor voltage, MC , and J is expressed as

MC =
Jγ

2
. (2)

The variations in jL and mC are plotted in Fig. 5 against
each other as the angle variable, θ evolves. The circular
arc corresponding to Mode 1 begins at the point in the 3rd
quadrant [−m0,−j0]. From the solution of the equivalent
circuit shown in Fig. 3(a), the variation in jL(θ) with respect
to mC is plotted. The center of this circle is [−1−M, 0] and
the radius of the circular arc is r1. Mode 1 ends when jL = 0
and mC = −MC . Mode 2 begins here and the center of the
circle changes to [−1 + M, 0] and the radius changes to r2.
This mode ends when the angle variable, θ = γ. Modes 3
and 4 are symmetric to Modes 1 and 2 as explained earlier.
Since Mode 1 ends at jL = 0,mC = −MC , we can write the
following expressions from Fig. 5.

r1 = MC − 1−M, r2 = MC − 1 +M. (3)

mC
[1 +M, 0]

[1−M, 0]

[−1 +M, 0]

[−1−M, 0]

θ = γ + αθ = α α

β
[MC , 0][−MC , 0]

−j0

j0

θ = 0
θ = 2γ

γ − π

r2 r1

Mode 1

Mode 2 Mode 3

Mode 4

θ

jL

θ = γ

−m0

r1 r2

Fig. 5. state-plane portrait of the Series Resonant Converter.

Applying Law of Cosines on the triangle highlighted in dotted
red line in Fig. 5, the following expression is obtained.

(2)2 = r21 + r22 − 2r1r2 cos(γ − π). (4)

Using (2)-(4) and since γ = π/F , a relationship between M ,
F and J is derived.

J2 + J

(
4F

π

)
+

4F 2(M2 − 1)

π2
tan2

( π

2F

)
= 0. (5)

Considering steady-state CCM operation of SRC, a similar
expression can be derived for F < 1 condition as well.
Considering only the positive real root of (5), J is expressed
as a function of M and F as

J = g(M,F ) =
2pF

π


√

1−M2 sin2 π

2F

cos
π

2F

− 1

 . (6)

It is interesting to note that eq. (6) is valid for both above (F >
1) and below (F < 1) resonance conditions and accordingly
the quantity, p, is defined as{

p = −1, F < 1

p = +1, F > 1

III. SMALL SIGNAL ANALYSIS

Similar to PWM converters, a simple small signal model
linearized around a quiescent operating point is desired for
SRC as well. To achieve this goal, the first step is to reiterate
that the PU rectifier output current averaged over a switching
cycle is equal to the normalized load current (J) during steady-
state operation. Therefore, the quantity, J , in (6) certainly
represents the average rectifier output current in normalized
form. Based on this consideration, the output filter and load
of the SRC is shown in Fig. 6, where, Cf , is the filter capacitor,
R is the load and i is the rectifier output current as shown in
Fig. 1.
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Fig. 6. Output Filter and load of SRC.

A. Average model of filter and load

Denoting average output voltage as v and average rectifier
output current as i, Kirchhoff’s Current Law (KCL) is applied
at the input node of the filter network shown in Fig. 1.

Cf
dv

dt
= i− v

R
. (7)

Per-unitizing (7) using Table I we can arrive at the following
expression where, Q is the PU load resistance and K is defined
in Table II.

K
dM

dt
= J −QM. (8)

The same relationship holds good for any small signal pertur-
bation in J , ∆J , and produces small signal variation in M ,
∆M accordingly. Applying Laplace transforms on both sides
and rearranging (8), the small signal output transfer function
of the SRC is expressed as

∆M(s)

∆J(s)
=

1

sK +Q
. (9)

B. Small signal perturbation in g(M,F )

By perturbing (6) while considering only linear terms [15]
and taking Laplace transforms one gets (10) where A and B
are defined in (11) and (12) respectively. C is defined in (13)
for the brevity of expressions A and B.

∆J(s) = B∆M(s) +A∆F (s), (10)

A =
∂g

∂F
=

2p

π

(
C

cos π
2F

− 1

)
+

p

2F

[
(M2 − 1) sin π

F

C cos3 π
2F

]
.

(11)

B =
∂g

∂M
= −2pFM

π

[
sin2 π

2F

C cos π
2F

]
. (12)

C =

√
1−M2 sin2 π

2F
. (13)

Considering (9) and (10), a small signal block diagram repre-
sentation of SRC is derived and presented in Fig. 7. Substitut-
ing ∆M(s) from (9) into (10), small signal normalized transfer
function of rectifier output current to switching frequency is
expressed as

∆J(s)

∆F (s)
=

(sK +Q)A

sK + (Q−B)
. (14)

∆M(s)∆M(s)

∆J(s)
=

1

sK +Q

B

A
∆J(s)

∆F (s)

Fig. 7. Small signal block diagram of SRC.

Similarly, substituting ∆J(s) from (9) into (10), small signal
normalized transfer function of output voltage to switching
frequency is obtained as

∆M(s)

∆F (s)
=

A

sK + (Q−B)
. (15)

It is worth mentioning here that the first-order small signal
models, (14) and (15), are extremely useful for current and
voltage control loop design, respectively. Eq. (14) and (15)
along with the A and B coefficients present a complete small
signal model of CCM operated SRC for both above (F > 1)
and below (F < 1) resonance conditions. In order to use these
transfer functions for closed loop control design, it’s important
to convert the PU based transfer function to actual small signal
transfer functions as given below.

∆i(s)

∆fs(s)
=

(sK +Q)AIb
sK + (Q−B)

. (16)

∆v(s)

∆fs(s)
=

AVb
sK + (Q−B)

. (17)

where, ∆i, ∆v and ∆fs are the small signal perturbations
of the rectified current, i, output voltage, v and switching
frequency, fs respectively. It is appropriate to highlight here
that no additional assumption has been made during the pro-
posed small signal analysis. However, this approach inherently
assumes that the steady-state time-domain relationship, given
by (6), is valid under small signal perturbation in the switch-
ing frequency. The dynamics of averaged resonant capacitor
voltage and inductor current is neglected. Even during small
signal perturbation, half wave symmetry of these waveforms
are approximately maintained and the average remains close
to zero.

IV. SIMULATION RESULTS

The power circuit of an SRC is developed using LTSPICE
simulation software. Input/output specifications of the con-
verter and different circuit parameters are detailed in Table
IV. Considering these parameters and using the definitions,
listed in Table I, different base quantities are calculated and
presented in Table IV. For the given transformer turns ratio
and fixed input/output specifications, the normalized output
voltage (M ) remains constant at 0.675. So, for any given F ,
the quantity, J , gets automatically defined by (6). The required
load resistance (R) for simulation is determined using the
following steps. Firstly, for a given steady-state normalized
switching frequency (F ), J is calculated using (6) and M =
0.675. Next, applying charge balance on filter capacitor (Cf ),
normalized load resistance (Q) is expressed as

Q =
J

M
. (18)
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TABLE IV
SRC SPECIFICATIONS AND PARAMETERS

Description Value
Input Voltage, Vdc 400 V

Output Voltage, V 375 V

Output Power, P 8.2 kW

Resonant Inductance, Lr 65.4 µH

Resonant Capacitor, Cr 172 nF

Filter Capacitor, Cf 1 mF

Transformer turns, 1 : n 25:18

Base Resistance, Rb 37.6 Ω

Base Current, Ib 14.7 A

Base Frequency, fb 47.5 kHz

Zoom - Valley
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i L
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Small signal perturbation introduced here
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v
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Fig. 8. Variation in different electrical variables due to small sig-
nal perturbation in switching frequency. Scale: V , vab (400V/div),
iL (30A/div), vC (400V/div). X-axis: Normal (10ms/div), Zoomed
(10µs/div).

Subsequently, using (18) and the base resistance, listed in
Table IV, required load (R) for simulation is obtained.

Open loop AC simulation is performed in LTSPICE by
sweeping the switching frequency using a VCO. The VCO
control input, Vf , defines the normalized switching frequency
(F ) at steady-state. The VCO is considered to be linear, which
means that any VCO input, vf = Vf +∆Vf sinωmt, results in
frequency output, f = F + ∆F sinωmt. Here, ωm represents
the angular sweep frequency and ∆Vf and ∆F define small
signal perturbations at the VCO input and PU switching fre-
quency, respectively. Subsequently, the transfer characteristics
with respect to the VCO input is considered as the benchmark
for validating the proposed modeling approach. As discussed
in Section III-C, half-wave symmetry of the resonant capacitor
voltage, vC , under small signal perturbation is an inherent
assumption of the proposed approach. To validate this, a small

TABLE V
HALF-WAVE SYMMETRY DURING SMALL-SIGNAL PERTURBATION

Description Zoom-Valley Zoom-Peak
Negative Peak Voltage, −MCVb −450V −530V

Positive Peak Voltage, MCVb 450V 530V

signal perturbation of 100 Hz is added with the nominal VCO
input and the corresponding waveforms of different electrical
variables of SRC are presented in Fig. 8. Small signal variation
in the output voltage, V , and small signal envelope in the state
variables (iL and vC) are clearly visible. Zoomed views of
these switching waveforms both at the peak and the valley of
the envelope are also shown in Fig. 8. Magnitudes of capacitor
voltage at t = α/ωb and t = (γ + α)/ωb are measured and
presented in Table V. Evidently, half-wave symmetry in vC is
maintained both at the peak and the valley of the small signal
perturbation.

Using the frequency sweep scheme developed in LTSPICE,
small signal transfer characteristics of SRC are obtained for the
following steady-state operating points above resonance, F =
1.2, 1.3. In order to maintain the same output voltage, M ,
the Q value is adjusted at each operating frequency, F . Using
(17), output voltage to switching frequency (∆v(s)/∆fs(s))
characteristics are determined and presented along with the
corresponding simulation results in Fig. 9(a). Excellent agree-
ment between analytical and simulation results are noted
approximately till the modulation frequency is (1/10)th of the
steady-state switching frequency (fs). Similarly, transfer char-
acteristics of rectifier output current to switching frequency
(∆i(s)/∆fs(s)) are obtained using (16) and plotted together
with the simulation results in Fig 9(b). Close agreement
between analytical data and simulation results is evident here
as well. To validate the proposed model below resonance,
a couple of steady-state operating points, F = 0.7, 0.8, are
chosen. Similar to above resonance, the Q value is adjusted to
maintain the same M . Considering these points, analytical and
simulated characteristics of ∆v(s)/∆fs(s) and ∆i(s)/∆fs(s)
are presented in Fig 9(c) and Fig 10, respectively. These results
confirm that the proposed approach is valid till the modulation
frequency is nearly equal to fs/10 during below resonance
conditions as well. A summary of the location of the poles
and zeroes for the derived transfer functions and its variation
as a function of switching frequency is provided in Table VI.

V. CONCLUSION

To address the existing problem of mathematically complex
and higher order small signal models, a reduced order model-

TABLE VI
TRANSFER FUNCTION VARIATION WITH SWITCHING FREQUENCY

Description F = 1.2 F = 1.3 F = 0.8 F = 0.7

Pole Location, Hz 19.6 13.7 13.9 8.1

Zero Location, Hz 9.3 6.2 9.7 6.6

∆v(s)/∆fs(s) Gain, dB 59.0 55.0 62.0 59.8

∆i(s)/∆fs(s) Gain, dB 34.2 26.7 37.7 32.1
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Fig. 10. Gain-phase plot of ∆i(s)/∆fs(s) - Below resonance

ing approach for SRC is presented in this paper. The proposed
technique exploits the steady-state state-plane analysis of SRC
and introduces averaging technique of an electrical variable to
arrive at a first-order small signal model. Closed form transfer
functions of rectifier output current to switching frequency and
output voltage to switching frequency are derived. This method
not only makes voltage mode controller design easy but opens
up an opportunity for rectifier output current feedback based
nested loop design as well. Simulation results from LTSPICE
validate the approximation made with regards to the half-wave
symmetry in the resonant tank inductor current and capacitor
voltage. Analytical data are noted to be in well agreement with
the simulation results till the modulation frequency is (1/10)th
of the steady-state switching frequency. This clearly defines
the scope of the proposed model. However, extension of
this modeling strategy to facilitate high bandwidth controller
design can certainly be explored in future.
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